Abstract

We investigate the completely positive semidefinite cone ${\mathcal{CS}_{+}^n}$, a new matrix cone consisting of all $n\times n$ matrices that admit a Gram representation by positive semidefinite matrices (of any size). In particular, we study relationships between this cone and the completely positive and the doubly nonnegative cone, and between its dual cone and trace positive noncommutative polynomials. We use this new cone to model quantum analogues of the classical independence and chromatic graph parameters $\alpha(G)$ and $\chi(G)$, which are roughly obtained by allowing variables to be positive semidefinite matrices instead of $0/1$ scalars in the programs defining the classical parameters. We can formulate these quantum parameters as conic linear programs over the cone ${\mathcal{CS}_{+}^n}$. Using this conic approach we can recover the bounds in terms of the theta number and define further approximations by exploiting the link to trace positive polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.