Abstract

3D CoNi2S4‐graphene‐2D‐MoSe2 (CoNi2S4‐G‐MoSe2) nanocomposite is designed and prepared using a facile ultrasonication and hydrothermal method for supercapacitor (SC) applications. Because of the novel nanocomposite structures and resultant maximized synergistic effect among ultrathin MoSe2 nanosheets, highly conductive graphene and CoNi2S4 nanoparticles, the electrode exhibits rapid electron and ion transport rate and large electroactive surface area, resulting in its amazing electrochemical properties. The CoNi2S4‐G‐MoSe2 electrode demonstrates a maximum specific capacitance of 1141 F g−1, with capacitance retention of ≈108% after 2000 cycles at a high charge–discharge current density of 20 A g−1. As to its symmetric device, 109 F g−1 at a scan rate of 5 mV s−1 is exhibited. This pioneering work should be helpful in enhancing the capacitive performance of SC materials by designing nanostructures with efficient synergetic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.