Abstract
Let b-(k) (n) denote the number of overpartition pairs of n where (i) consecutive parts di?er by a multiple of k + 1 unless the larger of the two is overlined, and (ii) the smallest part is overlined unless it is divisible by k+1. We prove many in?nite families of congruences modulo powers of 2 and 3 for b-(2) (n) and congruences modulo 4 and 5 for b-(4) (n). For example, for all n ? 0 and ?,? ? 0, b-(4)(4·34? ·52?(5n + i) + 34? ·52?)? 0 (mod 5),where i = 3,4.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.