Abstract

Let spt (n) denote the total number of appearances of smallest parts in the partitions of n. Recently, Andrews showed how spt (n) is related to the second rank moment, and proved some surprising Ramanujan-type congruences mod 5, 7 and 13. We prove a generalization of these congruences using known relations between rank and crank moments. We obtain explicit Ramanujan-type congruences for spt (n) mod ℓ for ℓ = 11, 17, 19, 29, 31 and 37. Recently, Bringmann and Ono proved that Dyson's rank function has infinitely many Ramanujan-type congruences. Their proof is non-constructive and utilizes the theory of weak Maass forms. We construct two explicit nontrivial examples mod 11 using elementary congruences between rank moments and half-integer weight Hecke eigenforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.