Abstract

We give a deterministic O(n log n)-time algorithm to decide if two n-point sets in 4-dimensional Euclidean space are the same up to rotations and translations. It has been conjectured that O(n log n) algorithms should exist for any fixed dimension. The best algorithms in d-space so far are a deterministic algorithm by Brass and Knauer [Int. J. Comput. Geom. Appl., 2000] and a randomized Monte Carlo algorithm by Akutsu [Comp. Geom., 1998]. They take time O(n^2 log n) and O(n^(3/2) log n) respectively in 4-space. Our algorithm exploits many geometric structures and properties of 4-dimensional space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.