Abstract

We investigate congruence classes and direct congruence classes of m-tuples in the complex projective space ℂP n . For direct congruence one allows only isometries which are induced by linear (instead of semilinear) mappings. We establish a canonical bijection between the set of direct congruence classes of m-tuples of points in ℂP n and the set of equivalence classes of positive semidefinite Hermitean m×m-matrices of rank at most n+1 with 1's on the diagonal. As a corollary we get that the direct congruence class of an m-tuple is uniquely determined by the direct congruence classes of all of its triangles, provided that no pair of points of the m-tuple has distance π/2. Examples show that the situation changes drastically if one replaces direct congruence classes by congruence classes or if distances π/2 are allowed. Finally we do the same kind of investigation also for the complex hyperbolic space ℂH n . Most of the results are completely analogous, however, there are also some interesting differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.