Abstract

We present a framework for constructing congruence closure modulo permutation equations, which extends the abstract congruence closure framework for handling permutation function symbols. Our framework also handles certain interpreted function symbols satisfying each of the following properties: idempotency (I), nilpotency (N), unit (U), I U U, or N U U. Moreover, it yields convergent rewrite systems corresponding to ground equations containing permutation function symbols. We show that congruence closure modulo a given finite set of permutation equations can be constructed in polynomial time using equational inference rules, allowing us to provide a polynomial time decision procedure for the word problem for a finite set of ground equations with a fixed set of permutation function symbols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.