Abstract
For studying the carbon thermal reduction rules of titanium in hot metal and providing a theoretical basis for the blast furnace (BF) hearth protection, the distribution behavior of titanium between low-titanium slag system of CaO–SiO2– MgO–Al2O3–TiO2 and hot metal was studied using analytical reagents in a temperature range from 1350 °C to 1600 °C. Through high temperature melting, rapid quenching, chemical analysis and thermodynamic model calculating, the results showed that the increase of reaction temperature, which improved the titanium distribution L(Ti) and lowered the system activity coefficient γsys, leads to the rise of equilibrium constant. Combined with Wagner and congregated electron phase models, the data obtained in distribution experiments were used to fit out the Gibbs free energy formula of titanium carbothermic reduction. Finally, the relations between the contents of Si and Ti in hot metal and the titanium load to reach the minimum w(Ti) for the formation of TiC were given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.