Abstract
This paper investigates optimal congestion pricing strategies using a real-world oriented agent-based simulation framework which allows for complex user behavior. The applied simulation approach accounts for iteratively learning transport users, stochastic demand, and only approximates the user equilibrium, which may be considered as closer to real-world than a model where transport users behave completely rational, have a perfect knowledge about all travel alternatives, and travel behavior strictly follows the user equilibrium. Two congestion pricing rules are developed and investigated. The first one directly builds on the Pigouvian taxation principle and computes marginal external congestion costs based on the queuing dynamics at the bottleneck links; resulting toll payments differ from agent to agent depending on the position in the queue (QCP approach). The second one uses control-theoretical elements to adjust toll levels depending on the congestion level in order to reduce or eliminate traffic congestion; resulting toll payments are the same for all travelers per time bin and road segment (LP approach). The pricing rules are applied to Vickrey's bottleneck model and the case study of the Greater Berlin area. The simulation experiments reveal that with and without mode and departure time choice, the rather simple LP rule results in a higher system welfare compared to the more complex QCP approach. The LP rule appears to better take into account the system's dynamics and the agents' learning behavior. The results also reveal that pricing significantly reduces traffic congestion, however, there is still a remaining delay, even with departure time choice. Overall, this paper points out further need for research and contributes to the exploration of optimization heuristics for real-world oriented simulation approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.