Abstract
The technical issue of congestion, which is predominantly found in deregulated power systems, is caused by the failure of transmission networks to satisfy load power demands. This failure is primarily caused due to an increase in loads or loss of transmission lines or generators in modern restructured power networks. This work introduces a CM approach using Deep Convolution Neural Network (DCNN) for minimizing congestion and supporting Independent System Operators (ISOs). The purpose of the work is to generate enhanced prediction outputs for congestion management with reduced error values. These objectives were achieved through the actual power rescheduling of generators. The proposed work adopts DCNN which is optimized using an Improved Lion Algorithm (LA) and aids in providing significant outcomes for congestion management with reduced error. By implementing customized IEEE 57-bus, IEEE 30-bus, and IEEE 118-bus test systems, the suggested approach has been successfully verified for its performance on test systems of varied sizes. This analysis incorporates restrictions such as line loads, bus voltage influence, generator, line limits, etc. The most important results for the test system indicating convergence profile, congestion cost, and change in real-power and voltage magnitude are obtained by the simulation in MATLAB, and on the basis of the obtained simulation outcomes, it is evident that the proposed Improved Lion Algorithm optimized Deep Convolution Neural Network displays phenomenal computation performance in minimizing congestion losses at minimum congestion costs. When compared to several contemporary optimization techniques, the suggested technique performs better in terms of congestion cost and losses by generating improved prediction outputs with reduced errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.