Abstract

The study describes the quantifying impact of plug-in electrical vehicles (PEVs) and renewable energy sources (RES) for congestion management of power system. The proposed congestion management problem is formulated considering uncertainties of wind, solar, number of PEVs and load condition over a day. The uncertainty modelling of solar, wind and PEVs is presented using beta, Rayleigh and normal distribution functions, respectively. The PEVs uncertainty is dependent on its number and increases with escalation in number. The degree of uncertainties of RES is dependent on corresponding variable (wind and solar). These uncertainties result in large number of scenarios which increases the computational burden. The k-means clustering algorithm is applied to reduce the number of scenarios. The objective function is formulated to minimise generation cost, rescheduling cost and PEV cost for congestion management. This system is analysed by using Monte Carlo simulation. The proposed methodology relieves the congestion and reduces the generation cost, total power generation, total loss with increasing number of PEVs. The test result indicates that PEVs not only act as small storage unit but it also provides power during peak hours. The proposed approach is modelled in GAMS environment and implemented on modified IEEE 39-bus system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.