Abstract

Metabolic variability across latitudinal populations of gammarid amphipods was examined in the summer by determining whole-animal rates of oxygen uptake (M(o)₂) in four species with overlapping distribution patterns in the northeast Atlantic and Arctic oceans. Comparisons were made between an arctic/boreal species, Gammarus setosus, a subarctic/boreal species, Gammarus oceanicus, a boreal/temperate species, Gammarus duebeni duebeni, and a temperate species, Gammarus locusta. Measurements included acclimatized M(o)₂ in all four species and M(o)₂ after acclimation to 10°C in two populations of G. oceanicus and G. locusta. In G. oceanicus, acclimatized M(o)₂ declined with latitude (13° to 5°C) so that metabolic rates were lower in subarctic (79°N) relative to temperate (58°N) populations and similar to the values in G. setosus at 79°N. Consequently, there was no evidence for metabolic rate compensation in the colder-water, high-latitude populations in the summer. Further examination of the specific effects of temperature revealed similarities in M(o)₂ between populations of G. oceanicus acclimated at 10°C and similarities in thermal sensitivity (Q(10)) and activation energies (E(a)) on exposure to acute temperature change. In sharp contrast, there was no variation in summer acclimatized M(o)₂ with latitude in either G. d. duebeni between 48° and 70°N or G. locusta between 38° and 53°N. Instead, the two species maintained relatively high metabolic rates across latitudes, which were associated in G. locusta with differences in M(o)₂ and with Q(10) and E(a) values in amphipods acclimated at 10°C. The ability to compensate metabolic rate with latitude in the summer suggests greater metabolic flexibility, which predicts a greater capacity for survival during climate change of the temperate/boreal over the subarctic and arctic gammarid species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.