Abstract

Glass-ceramic sulfide solid electrolytes like Li7P3S11 are practicable propellants for safe and high-performance all-solid-state lithium-sulfur batteries (ASSLSBs); however, the stability and conductivity issues remain unsatisfactory. Herein, we propose a congener substitution strategy to optimize Li7P3S11 as Li7P2.9Sb0.1S10.75O0.25 via chemical bond and structure regulation. Specifically, Li7P2.9Sb0.1S10.75O0.25 is obtained by a Sb2O5 dopant to achieve partial Sb/P and O/S substitution. Benefiting from the strengthened oxysulfide structural unit of POS33- and P2OS64- with bridging oxygen atoms and a distorted lattice configuration of the Sb-S tetrahedron, the Li7P2.9Sb0.1S10.75O0.25 electrolyte exhibits prominent chemical stability and high ionic conductivity. Besides the improved air stability, the ionic conductivity of Li7P2.9Sb0.1S10.75O0.25 could reach 1.61 × 10-3 S cm-1 at room temperature with a wide electrochemical window of up to 5 V (vs Li/Li+), as well as good stability against Li and Li-In alloy anodes. Consequently, the ASSLSB with the Li7P2.9Sb0.1S10.75O0.25 electrolyte shows high discharge capacities of 1374.4 mAh g-1 (0.05C, 50th cycle) at room temperature and 1365.4 mAh g-1 (0.1C, 100th cycle) at 60 °C. The battery also presents remarkable rate performance (1158.3 mAh g-1 at 1C) and high Coulombic efficiency (>99.8%). This work provides a feasible technical route for fabricating ASSLSBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call