Abstract

Thanks to the development of machine learning techniques, it has been shown that the supervised learning can be useful to study critical phenomena of various systems. However, the supervised learning cannot be done without labels which require knowledge about critical behavior of the system. To overcome this barrier, unsupervised machine learning methods have been considered and the confusion scheme has been proposed. In this study, we use the confusion scheme of the unsupervised learning and investigate critical behavior of various systems which exhibit single (double) phase transitions with (without) quasi-long-range order. In detail, we choose the two-color Ashkin-Teller model, the XY model, and the eight-state clock model as such systems and snapshots of the spin configurations at various temperatures are collected via Monte Carlo simulations to be used as input data for the unsupervised machine learning. We also put focus on the size dependence of results and validate the availability of the confusion scheme in thermodynamic limit. Our results indicate that the confusion scheme of the unsupervised learning successfully locates the approximate transition points for all models and becomes more accurate as the system size is increased. We also find a characteristic feature of the result which reflects the presence of a quasi-long-range order. We conclude that regardless of the presence of a quasi-long-range order, single and double phase transitions can be detected via the confusion scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.