Abstract

Adopting a binned method, we model-independently reconstruct the mass function of primordial black holes (PBHs) from GWTC-3 and find that such a PBH mass function can be explained by a broad red-tilted power spectrum of curvature perturbations if all the events (or the small effective spin events) have a primordial origin. Even though GW190521 with component masses in upper mass gap (m>65M⊙) can be naturally interpreted in the PBH scenario, the events (including GW190814, GW190425, GW200105, and GW200115) with component masses in the light mass range (m<3M⊙) are quite unlikely to be explained by binary PBHs although there are no electromagnetic counterparts because the corresponding PBH merger rates are much smaller than those given by LIGO-Virgo. Furthermore, we predict that both the gravitational-wave (GW) background generated by the binary PBHs and the scalar-induced GWs accompanying the formation of PBHs should be detected by the ground-based and space-borne GW detectors and pulsar timing arrays in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.