Abstract

In this paper we study a class of supersymmetric models with non-universal gaugino masses that arise from a mixture of SU(5) singlet and non-singlet representations, i.e. a combination of 1, 24, 75 and 200. Based on these models we calculate the expected dark matter signatures within the linear combination 1 ⊕ 24 ⊕ 75 ⊕ 200. We confront the model predictions with the detected boson as well as current experimental limits from selected indirect and direct dark matter search experiments ANTARES respective IceCube and XENON. We comment on the detection/exclusion capability of the future XENON 1t project. For the investigated parameter span we could not find a SU(5) singlet model that fulfils the Higgs mass and the relic density constraint. In contrary, allowing a mixture of 1 ⊕ 24 ⊕ 75 ⊕ 200 enables a number of models fulfilling these constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call