Abstract

A distributed research network (DRN) of electronic health care databases, in which data reside behind the firewall of each data partner, can support a wide range of comparative effectiveness research (CER) activities. An essential component of a fully functional DRN is the capability to perform robust statistical analyses to produce valid, actionable evidence without compromising patient privacy, data security, or proprietary interests. We describe the strengths and limitations of different confounding adjustment approaches that can be considered in observational CER studies conducted within DRNs, and the theoretical and practical issues to consider when selecting among them in various study settings. Several methods can be used to adjust for multiple confounders simultaneously, either as individual covariates or as confounder summary scores (eg, propensity scores and disease risk scores), including: (1) centralized analysis of patient-level data, (2) case-centered logistic regression of risk set data, (3) stratified or matched analysis of aggregated data, (4) distributed regression analysis, and (5) meta-analysis of site-specific effect estimates. These methods require different granularities of information be shared across sites and afford investigators different levels of analytic flexibility. DRNs are growing in use and sharing of highly detailed patient-level information is not always feasible in DRNs. Methods that incorporate confounder summary scores allow investigators to adjust for a large number of confounding factors without the need to transfer potentially identifiable information in DRNs. They have the potential to let investigators perform many analyses traditionally conducted through a centralized dataset with detailed patient-level information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call