Abstract
AbstractWe establish a general framework to study the conforming and nonconforming virtual element methods (VEMs) for solving a Kirchhoff plate contact problem with friction, which is a fourth-order elliptic variational inequality (VI) of the second kind. This VI contains a non-differentiable term due to the frictional contact. This theoretical framework applies to the existing virtual elements such as the conforming element, the $C^0$-continuous nonconforming element and the fully nonconforming Morley-type element. In the unified framework we derive a priori error estimates for these virtual elements and show that they achieve optimal convergence order for the lowest-order case. For demonstrating the performance of the VEMs we present some numerical results that confirm the theoretical prediction of the convergence order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.