Abstract
The myriad conformers of the neutral form of natural amino acid serine (Ser) have been investigated by systematic computations with reliable electronic wave function methods. A total of 85 unique conformers were located using the MP2/cc-pVTZ level of theory. The 12 lowest-energy conformers of serine fall within a 8 kJ mol(-1) window, and for these species, geometric structures, precise relative energies, equilibrium and vibrationally averaged rotational constants, anharmonic vibrational frequencies, infrared intensities, quartic and sextic centrifugal distortion constants, dipole moments, and (14)N nuclear quadrupole coupling constants were computed. The relative energies were refined through composite focal-point analyses employing basis sets as large as aug-cc-pV5Z and correlation treatments through CCSD(T). The rotational constants for seven conformers measured by Fourier-transform microwave spectroscopy are in good agreement with the vibrationally averaged rotational constants computed in this study. Our anharmonic vibrational frequencies are compared to the large number of experimental vibrational absorptions attributable to at least six conformers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.