Abstract

Raman spectra are presented for nine crystals containing the guanosine residue and ten crystals containing the cytidine residue whose conformations are known from their X-ray crystallographic analyses. A nearly complete set of assignments of all the observed Raman lines in the 1700—150 cm −1 range is proposed on the basis of a previous normal coordinate treatment of guanine and cytosine with a set of force constants determined by an ab initio MO method, and on the basis of a mutual comparison of the observed spectra. A number of conformation sensitive Raman lines are found here, and several rules on the structure—spectrum correlations are proposed. Raman spectral features in the 1400—1300 cm −1 and 700—600 cm −1 ranges seem to reflect sensitively and regularly the conformation of the guanosine residue, namely its ribose-ring puckering state at the torsion angle around its glycosidic bond. A spectral feature in the 1300—1200 cm −1 range is found to be sensitive to the cytidine conformation. The position of a strong Raman line in the 900—750 cm −1 region, on the other hand, seems to indicate a particular set of torsion angles along the PO5′C5′C4′C3′O3′ backbone. In the light of these proposed rules, the so-called B-form poly [d(GC)].· poly[d(GC)] in solution must have an O4′ endo-anti guanosine, a C2′ endo-anti cytidine, and an “alternating B” backbone as proposed by Klug [7] while its Z-form should have a C3′ endo-syn guanosine, a form of cytidine in between C2′ endoC1′ exo-anti cytidine, and a Z I form backbone, as defined by Wang [41].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call