Abstract

BackgroundThe spread of tau pathology in Alzheimer’s disease (AD) is mediated by cell-to-cell transmission of pathological tau seeds released from neurons that, upon internalization by recipient neurons, template the misfolding of naïve cellular tau, thereby propagating fibrillization. We hypothesize that anti-tau monoclonal antibodies (mAbs) that selectively bind to pathological tau seeds will inhibit propagation of tau aggregates and reduce the spread of tau pathology in vivo.MethodsWe inoculated mice with human AD brain-derived extracts containing tau paired helical filaments (AD-tau) and identified two novel mAbs, DMR7 and SKT82, that selectively bind to a misfolded pathological conformation of tau relative to recombinant tau monomer. To evaluate the effects of these mAbs on the spread of pathological tau in vivo, 5xFAD mice harboring significant brain Aβ plaque burden were unilaterally injected with AD-tau in the hippocampus, to initiate the formation of neuritic plaque (NP) tau pathology, and were treated weekly with intraperitoneal (i.p.) injections of DMR7, SKT82, or IgG isotype control mAbs.ResultsDMR7 and SKT82 bind epitopes comprised of the proline-rich domain and c-terminal region of tau and binding is reduced upon disruption of the pathological conformation of AD-tau by chemical and thermal denaturation. We found that both DMR7 and SKT82 immunoprecipitate pathological tau and significantly reduce the seeding of cellular tau aggregates induced by AD-tau in primary neurons by 60.5 + 13.8% and 82.2 + 8.3%, respectively, compared to IgG control. To investigate the mechanism of mAb inhibition, we generated pH-sensitive fluorophore-labeled recombinant tau fibrils seeded by AD-tau to track internalization of tau seeds and demonstrate that the conformation-selective tau mAbs inhibit the internalization of tau seeds. DMR7 and SKT82 treatment reduced hyperphosphorylated NP tau as measured with AT8 immunohistochemistry (IHC) staining, but did not achieve statistical significance in the contralateral cortex and SKT82 significantly reduced tau pathology in the ipsilateral hippocampus by 24.2%; p = 0.044.ConclusionsThese findings demonstrate that conformation-selective tau mAbs, DMR7 and SKT82, inhibit tau pathology in primary neurons by preventing the uptake of tau seeds and reduce tau pathology in vivo, providing potential novel therapeutic candidates for the treatment of AD.

Highlights

  • The spread of tau pathology in Alzheimer’s disease (AD) is mediated by cell-to-cell transmission of pathological tau seeds released from neurons that, upon internalization by recipient neurons, template the misfolding of naïve cellular tau, thereby propagating fibrillization

  • Gibbons et al Molecular Neurodegeneration (2020) 15:64 (Continued from previous page). These findings demonstrate that conformation-selective tau monoclonal antibodies (mAbs), DMR7 and SKT82, inhibit tau pathology in primary neurons by preventing the uptake of tau seeds and reduce tau pathology in vivo, providing potential novel therapeutic candidates for the treatment of AD

  • The typically unstructured tau protein can adopt a misfolded beta-sheet conformation that aggregates into fibrils with a filament core comprised of the microtubule-binding repeats (MTBRs) and folding that enables contact of the N-terminus with the core domains to form paired helical filaments (PHFs) that assemble into Neurofibrillary tangles (NFT) [4,5,6]

Read more

Summary

Introduction

The spread of tau pathology in Alzheimer’s disease (AD) is mediated by cell-to-cell transmission of pathological tau seeds released from neurons that, upon internalization by recipient neurons, template the misfolding of naïve cellular tau, thereby propagating fibrillization. The neuropathological hallmarks of AD consist of extracellular amyloid-beta (Aβ) plaques and intraneuronal aggregates of tau protein associated with neuritic plaques (NPs), neuropil threads (NTs), and neurofibrillary tangles (NFTs) [1, 2]. The typically unstructured tau protein can adopt a misfolded beta-sheet conformation that aggregates into fibrils with a filament core comprised of the MTBRs and folding that enables contact of the N-terminus with the core domains to form paired helical filaments (PHFs) that assemble into NFTs [4,5,6]. Tau plays a central role in the neurodegenerative disease process and presents an attractive target for therapeutic intervention in AD and related tauopathies

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.