Abstract

Recently, the molecular structures of monomeric and dimeric kinesin constructs in complex with ADP have been determined by X-ray crystallography (Kull et al. 1996; Kozielski et al. 1997 a; Sack et al. 1997). The "motor" or "head" domains have almost identical conformations in the known crystal structures, yet the kinesin dimer is asymmetric: the orientation of the two heads relative to the coiled-coil formed by their neck regions is different. We used small angle solution scattering of kinesin constructs and microtubules decorated with kinesin in order to find out whether these crystal structures are of relevance for kinesin's structure under natural conditions and for its interaction with microtubules. Our preliminary results indicate that the crystal structures of monomeric and dimeric kinesin are similar to their structures in solution, though in solution the center-of-mass distance between the motor domains of the dimer could be slightly greater. The crystal structure of dimeric kinesin can be interpreted as representing two equivalent conformations. Transitions between these or very similar conformational states may occur in solution. Binding of kinesin to microtubules has conformational effects on both, the kinesin and the microtubule. Solution scattering of kinesin decorated microtubules reveals a peak in intensity that is characteristic for the B-surface lattice and that can be used to monitor the axial repeat of the microtubules under various conditions. In decoration experiments, dimeric kinesin dissociates, at least partly, leading to a stoichiometry of 1:1 (one kinesin head per tubulin dimer; Thormählen et al. 1998a) in contrast to the stoichiometry of 2:1 reported for dimeric ncd. This discrepancy is possibly due to the effect of steric hindrance between kinesin dimers on adjacent binding sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.