Abstract
Conformations of diethyl ether (DEE) were studied at low temperatures in N2 and Ar matrixes. Computations performed at B3LYP/aug-cc-pVDZ level of theory yielded three minima corresponding to tt, tg± and g±g± conformers of DEE. Of the three, the tt and tg± conformers of DEE were experimentally identified in N2 and Ar matrixes. Furthermore, hydrogen bonded complexes of pyrrole (py) with DEE have been investigated using Density Functional Theory (DFT) and matrix isolation infrared spectroscopy. Computations performed at B3LYP level of theory using aug-cc-pVDZ basis set on pyrrole with tt and tg± conformers of DEE gave py-DEE-tt and py-DEE-tg± complexes, both characterized by NH⋯O interaction. Experimental evidence for the formation of py-DEE-tt and py-DEE-tg± complexes was affirmed from the shifts in the NH stretching, NH bending regions of pyrrole and COC and CH stretching regions of DEE. NBO analysis was carried out to understand the charge-transfer delocalization interactions in the conformers of DEE and its hydrogen bonded complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.