Abstract

AbstractThe effect of conformational restriction of the C9‐N10 bridge on inhibitory potency and selectivity of trimetrexate against dihydrofolate reductase, was studied. Specifically three nonclassical tricyclic 1,3‐diamino‐8‐(3′,4′,5′‐trimethoxybenzyl)‐7,9‐dihydro‐pyrrolo[3,4‐c]pyrido[2,3‐d]pyrimidin‐6(5H,8H)‐one (4), 1,3‐diamino‐8‐(3′,4′,5′‐trimethoxybenzyl)‐9‐hydro‐pyrrolo[3,4‐c]pyrido[2,3‐d]pyrimidin‐6‐(8H)‐one (5) and 1,3‐diamino‐(8H)‐(3′,4′,5′‐trimethoxybenzyl)‐7,9‐dihydro‐pyrrolo[3,4‐c]pyrido[2,3‐d]pyrimidine (7) antifolates were synthesized. The tricyclic analogues 4 and 5 were obtained via the regiospecific cyclo‐condensation of the β‐keto ester 17 with 2,4,6‐triaminopyrimidine. The analogue 7 was obtained via reduction of the lactam 4 with borane in tetrahydrofuran. Compounds 4, 5 and 7 were evaluated as inhibitors of dihydrofolate reductase from Pneumocystis carinii, Toxoplasma gondii and rat liver. All three compounds were more selective than trimetrexate against Pneumocystis carinii dihydrofolate reductase and significantly more selective than trimetrexate against Toxoplasma gondii dihydrofolate reductase compared with rat liver dihydrofolate reductase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.