Abstract

A variable temperature NMR study shows that a protective group on the hydroxy function of a chiral allylic alcohol can either enhance or counter the influence of the vinyl substituent on the ground-state (GS) conformations. If the allylic hydroxy is protected as a methyl ether, the CH-eclipsed form I becomes favored to a greater degree for normal chiral alkenes. Furthermore, conformer I becomes preferred even for the γ-hydrory-α,β-unsaturated esters, which normally favor the CO-eclipsed form (II). On the other hand, the tert-butyldimethylsilyl (TBDMS) ether enhances the preference for conformer II for the γ-hydroxy-α,β-unsaturated esters and diminishes the preference for the CH-eclipsed form of normal chiral alkenes

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.