Abstract

The N-terminal 1-34 segments of both parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences between the two hormones in their amino acid sequence. Recently, it was shown that in (1-34)PTH/PTHrP segmental hybrid peptides, the N-terminal 1-14 segment of PTHrP is incompatible with the C-terminal 15-34 region of PTH leading to substantial reduction in potency. The sites of incompatibility were identified as positions 5 in PTH and 19 in PTHrP. In the present paper we describe the synthesis, biological evaluation, and conformational characterization of two point-mutated PTH/PTHrP 1-34 hybrids in which the arginine residues at positions 19 and 21 of the native sequence of PTHrP have been replaced by valine (hybrid V(21)) and glutamic acid (hybrid E(19)), respectively, taken from the PTH sequence. Hybrid V(21) exhibits both high receptor affinity and biological potency, while hybrid E(19) binds weakly and is poorly active. The conformational properties of the two hybrids were studied in aqueous solution containing dodecylphosphocholine (DPC) micelles and in water/2,2, 2-trifluoroethanol (TFE) mixtures. Upon addition of TFE or DPC micelles to the aqueous solution, both hybrids undergo a coil-helix transition. The maximum helix content in 1 : 1 water/TFE, obtained by CD data for both hybrids, is approximately 80%. In the presence of DPC micelles, the maximum helix content is approximately 40%. The conformational properties of the two hybrids in the micellar system were further investigated by combined 2D-nmr, distance geometry (DG), and molecular dynamics (MD) calculations. The common structural motif, consisting of two helical segments located at N- and C-termini, was observed in both hybrids. However, the biologically potent hybrid V(21) exhibits two flexible sites, centered at residues 12 and 19 and connecting helical segments, while the flexibility sites in the weakly active hybrid E(19) are located at position 11 and in the sequence 20-26. Our findings support the hypothesis that the presence and location of flexibility points between helical segments are essential for enabling the active analogs to fold into the bioactive conformation upon interaction with the receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.