Abstract

In their 1H NMR spectra in CDCl3 3-oxo-N-acyl homoserine lactones (OHLs) show significant downfield chemical shifts of the amide NH proton when compared to the parent N-acyl homoserine lactones (AHLs). NMR spectroscopic and DFT calculation studies have shown that this is most likely due to the presence of a stabilising intramolecular H-bond from the NH to the 3-oxo group. The 1H NMR spectra also show evidence for the enol tautomers and that the amount of enol present for a range of OHLs is 4.1–4.5% in CDCl3 and 6.5–7.2% in CD3CN. In contrast, DFT calculations show that the lowest energy enol tautomer and the keto tautomer are of equal energy in the gas phase, but that the keto tautomer is more stable in chloroform, acetonitrile and water solution. The calculations also show that there is no evidence for any n→π∗ or C5H-bonding interactions being present in either the lowest energy keto or enol tautomer of the OHLs in solution or the gas phase, which is in contrast to the reported solid-state structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.