Abstract

The conformers of push–pull 3-[(2,2-dimethylhydrazinyl)methylene]-pentane-2,4-dione (CH3)2NNHCHC(COCH3)2 (DMHMP) have been studied experimentally by NMR and vibrational spectroscopy and theoretically by ab initio calculations at MP2 and DFT B3LYP levels in various basis sets. The NMR spectra were obtained in chloroform and dimethylsulfoxide and the IR and Raman spectra of DMHMP as a solid and as a solute in various less and more polar solvents at room temperature have been recorded.DMHMP was prepared as a pure solid and the data from X-ray analysis revealed that DMHMP exists in solid state as EZa conformer with an intramolecular hydrogen bond. The geometries and relative energies of possible conformers of DMHMP were evaluated at the both levels of theory in several basis sets and compared with the data from X-ray analysis.According to the NMR spectra the studied compound exists as a single entity. On the other hand vibrational spectra revealed that in less polar DMHMP solutions the presence of the second less polar ZZa conformer is possible, whereas in more polar solvent only one EZa conformer is observed. The influence of the environment polarity on this conformational equilibrium is discussed with respect to the SCRF solvent effect calculations using IEFPCM model. The observed IR and Raman bands were compared with calculated MP2/cc-pVTZ harmonic vibrational frequencies and assigned on the basis of potential energy distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call