Abstract

The probability distribution of isomeric conformations in poly(dimethylsi1oxane) has been investigated both by conformational energy considerations and by molecular dynamics simulations. A comparatively smooth distribution of isomeric states is obtained from both approaches. The molecular dynamics trajectory of a simulated dimethylsiloxane oligomer of eight units is used as a reliable and realistic tool to estimate the probability of occurrence for various rotational isomeric states. Conformations involving bonds in the gauche state produce attractive intramolecular potentials through suitable spatial arrangement of close neighbors, which is contradictory to the unfavorable interactions attributed to them in the model described by Flory, Crescenzi, and Mark. The relative potential energies of the various conformational states are obtained from the probability of those conformations occurring in a molecular dynamics simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.