Abstract

Stochastic proximity embedding (SPE) and self-organizing superimposition (SOS) are two recently introduced methods for conformational sampling that have shown great promise in several application domains. Our previous validation studies aimed at exploring the limits of these methods and have involved rather exhaustive conformational searches producing a large number of conformations. However, from a practical point of view, such searches have become the exception rather than the norm. The increasing popularity of virtual screening has created a need for 3D conformational search methods that produce meaningful answers in a relatively short period of time and work effectively on a large scale. In this work, we examine the performance of these algorithms and the effects of different parameter settings at varying levels of sampling. Our goal is to identify search protocols that can produce a diverse set of chemically sensible conformations and have a reasonable probability of sampling biologically active space within a small number of trials. Our results suggest that both SPE and SOS are extremely competitive in this regard and produce very satisfactory results with as few as 500 conformations per molecule. The results improve even further when the raw conformations are minimized with a molecular mechanics force field to remove minor imperfections and any residual strain. These findings provide additional evidence that these methods are suitable for many everyday modeling tasks, both high- and low-throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.