Abstract

G protein-coupled potassium channels (GIRK/Kir3.x) are key determinants that translate inhibitory chemical neurotransmission into changes in cellular excitability. To understand the mechanism of channel activation by G proteins, it is necessary to define the structural rearrangements in the channel that result from interaction with Gβγ subunits. In this study we used a combination of fluorescence spectroscopy and through-the-objective total internal reflection microscopy to monitor the conformational rearrangements associated with the activation of GIRK channels in single intact cells. We detect activation-induced changes in FRET consistent with a rotation and expansion of the termini along the central axis of the channel. We propose that this rotation and expansion of the termini drives the channel to open by bending and possibly rotating the second transmembrane segment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.