Abstract

The molecular structure of axial and equatorial conformers of 1-silyl-silacyclohexane, C(5)H(10)SiHSiH(3), and the thermodynamic equilibrium between these species were investigated by means of gas electron diffraction (GED), dynamic nuclear magnetic resonance (DNMR), temperature-dependent Raman spectroscopy, and quantum chemical calculations (CCSD(T), MP2 and DFT methods). According to GED, the compound exists as a mixture of two conformers possessing the chair conformation of the six-membered ring and C(s) symmetry and differing in the axial or equatorial position of the SiH(3) group (axial = 57(7) mol %/equatorial = 43(7) mol %) at T = 321 K. This corresponds to an A value (free energy difference = G(axial) - G(equatorial)) of -0.17(15) kcal mol(-1). A low-temperature (13)C NMR experiment using SiD(4) as a solvent resulted in an axial/equatorial ratio of 45(3)/55(3) mol % at 110 K corresponding to an A value of 0.05(3) kcal mol(-1), and a DeltaG(#) value of 5.7(2) kcal mol(-1) was found at 124 K. Temperature-dependent Raman spectroscopy in the temperature range of 210-300 K of the neat liquid, a THF solution, and a heptane solution indicates that the axial conformer is favored over the equatorial one by 0.26(10), 0.23(10), and 0.22(10) kcal mol(-1) (DeltaH values), respectively. CCSD(T)/CBS and MP2/CBS calculations in general predict both conformations to have very similar stability and are, thus, in excellent agreement with the DNMR result but in a slight disagreement with the GED and Raman results. Two DFT functionals, that account for dispersion interactions, M06-2X/pc-3 and B2PLYP-D/QZVPP, deviate from the high-level coupled cluster and MP2 calculations by only 0.1 kcal mol(-1) on average, whereas B3LYP/pc-3 calculations greatly overestimate the stability of the equatorial conformer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call