Abstract

The amino acid Aib predisposes a peptide to be helical with context-dependent preference for either 3(10)- or alpha- or a mixed helical conformation. Short peptides also show an inherent tendency to be unfolded. To characterize helical and unfolded states adopted by water-soluble Aib-containing peptides, the conformational preference of Ac-Ala-Aib-Ala-Lys-Ala-Aib-Lys-Ala-Lys-Ala-Aib-Tyr-NH(2) was determined by CD, NMR and MD simulations as a function of temperature. Temperature-dependent CD data indicated the contribution of two major components, each an admixture of helical and extended/polyproline II structures. Both right- and left-handed helical conformations were detected from deconvolution of CD data and (13)C NMR experiments. The presence of a helical backbone, more pronounced at the N-terminal, and a temperature-induced shift in alpha-helix/3(10)-helix equilibrium, more pronounced at the C-terminal, emerged from NMR data. Starting from polyproline II, the N-terminal of the peptide folded into a helical backbone in MD simulations within 5 ns at 60 degrees C. Longer simulations showed a mixed-helical backbone to be stable over the entire peptide at 5 degrees C while at 60 degrees C the mixed-helix was either stable at the N-terminus or occurred in short stretches through out the peptide, along with a significant population of polyproline II. Our results point towards conformational heterogeneity of water-soluble Aib-based peptide helices and the associated subtleties. The problem of analyzing CD and NMR data of both left- and right-handed helices are discussed, especially the validity of the ellipticity ratio [theta](222)/[theta](207), as a reporter of alpha-/3(10)- population ratio, in right- and left-handed helical mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.