Abstract

Hypermodified bases present at 3′-adjacent (37th) position in anticodon loop of tRNAPhe are well known for their contribution in modulating codon-anticodon interactions. Peroxywybutosine (o2yW), a wyosine family member, is one of such tricyclic modified bases observed at the 37th position in tRNAPhe. Conformational preferences and three-dimensional structural analysis of peroxywybutosine have not been investigated in detail at atomic level. Hence, in the present study quantum chemical semi-empirical RM1 and multiple molecular dynamics (MD) simulations have been used to study structural significance of peroxywybutosine in tRNAPhe. Full geometry optimizations over the peroxywybutosine base have also been performed using ab-initio HF-SCF (6-31G**), DFT (B3LYP/6-31G**) and semi-empirical PM6 method to compare the salient properties. RM1 predicted most stable structure shows that the amino-carboxy-propyl side chain of o2yW remains ‘distal’ to the five membered imidazole ring of tricyclic guanosine. MD simulation trajectory of the isolated peroxy base showed restricted periodical fluctuations of peroxywybutosine side chain which might be helpful to maintain proper anticodon loop structure and mRNA reading frame during protein biosynthesis process. Another comparative MD simulation study of the anticodon stem loop with codon UUC showed various properties, which justify the functional implications of peroxywybutosine at 37th position along with other modified bases present in ASL of tRNAPhe. Thus, this study presents an atomic view into the structural properties of peroxywybutosine, which can be useful to determine its role in the anticodon stem loop in context of codon-anticodon interactions and frame shift mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.