Abstract
Spider silk is spun in a complex and unique process, thought to depend on a hydrophobic conversion of a predominantly disordered to a β-sheet rich protein structures. To test this hypothesis we monitored the effect of cationic (DOTAC) and anionic (alkyl sulfate) detergents and of (ii) solvent polarity using a series of alcohols on the secondary structure transition in dilute solutions of native spidroin. Our results showed that the detergents hydrophilic head charge and hydrophobic tail length cooperatively induced either a transition to the β-sheet rich form or a stable helical state. Changing the solvent polarity showed that HFIP and TFE induced formation of stable helical forms whereas MeOH, EtOH and IsoP induced a kinetically driven formation of β-sheet rich structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.