Abstract
The activation mechanism of G-protein-coupled receptors triggered upon binding of a ligand represents a very important 'conformational switch' in the biological array of signal transduction. However, the molecular and functional details for this activation switch remain unknown. Random saturation mutagenesis data on the complement factor 5a receptor has provided a large data set of mutants including several constitutively active mutants. In the present study, we employed computational modeling to rationalize the constitutive activity for two constitutively active mutants, NQ (I124N/L127Q) and F251A, and we then made predictions for a series of mutants that either promote or constrain constitutive activity. Biological testing of the site-directed mutants confirmed most of the predictions of the computational modeling. These results support a molecular mechanism of constitutive activity in complement factor 5a receptor mutants that is associated with conformational changes in a network of residues neighboring F251 as the focal point of origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.