Abstract

A chiral adduct formed between a chiral carboxylic acid, tetrahydro-2-furoic acid (THFA), and a chiral ester, propylene oxide (PO), was investigated using rotational spectroscopy and DFT calculations. Isolated THFA exists dominantly as three different conformers: I, II, and III in a jet, with I and II taking on the trans-COOH configuration and III having the cis-COOH configuration. We utilized CREST, a conformational ensemble space exploration tool, to identify the possible conformations of the binary adduct, THFA⋅⋅⋅PO. Subsequent DFT geometry optimizations predicted about two hundred homochiral and heterochiral binary structures with 28 low energy structures within an energy window of 15 kJ mol-1 . A rich broadband rotational spectrum was obtained with a mixture of trace amounts of THFA+PO in neon in a supersonic jet expansion. Six THFA⋅⋅⋅PO conformers were identified experimentally. Kinetically favored binary products which contain trans-COOH I dominate among the observed conformers, while thermodynamically more stable adducts were also detected. Detailed analyses of the structures of the observed conformers show interesting chirality-controlled structural preferences. Such non-covalently bound chiral contact pairs are the foundation of chiral-tag rotational spectroscopy, an exciting new analytical application of rotational spectroscopy for determination of enantiomeric excess. Enantiomeric excess analyses were performed and the results are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call