Abstract

Bax is known for its pro-apoptotic role within the mitochondrial pathway of apoptosis. However, the mechanism for transitioning Bax from cytosolic to membrane-bound oligomer remains elusive. Previous nuclear magnetic resonance (NMR) and electronparamagnetic resonance (EPR) studies defined monomeric Bax as conformationally homogeneous. Yet it has recently been proposed that monomeric Bax exists in equilibrium with a minor state that is distinctly different from its NMR structure. Here, we revisited the structural analysis of Bax using methods uniquely suited for unveiling "invisible" states of proteins, namely, NMR paramagnetic relaxation enhancements and EPR double electron-electron resonance (DEER). Additionally we examined the effect of glycerol, the co-solvent of choice in DEER studies, on the structure of Bax using NMR chemical-shift perturbations and residual dipolar couplings. Based on our combined NMR and EPR results, Bax is a conformationally homogeneous protein prior to its activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.