Abstract

We measured the conformational fluctuations of DNA in E. Coli in vivo using fluorescence correlation spectroscopy (FCS). The chromosomal DNA was randomly decorated with a cell-permeable intercalating dye. Conformational fluctuations of the DNA move the fluorophores stochastically into the diffraction-limited excitation volume of a focused laser beam. The time correlation function of the fluorescence intensity reflects the underlying dynamics of the DNA on length scales down to ∼200 nm. A comparison between live cells and dead yet structurally intact cells shows identical fluctuation spectra for short time scales, yet substantial differences for frequencies below 100 Hz. Live cells show much stronger fluctuations in this regime. This observation points to the crucial importance of active molecular motor action, as opposed to passive thermal noise, in driving larger conformational fluctuations in the chromosomal DNA, in particular on length scales exceeding ∼500 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.