Abstract

BackgroundMajor histocompatibility complexes (MHCs) play a crucial role in the cell-mediated adaptive immune response as they present antigenic peptides (p) which are recognized by host T cells through a complex formation of the T cell receptor (TCR) with pMHC. In the present study, we report on changes in conformational flexibility within a pMHC molecule upon TCR binding by looking at molecular dynamics (MD) simulations of the free and the TCR-bound pMHC-I protein of the LC13-HLA-B*44:05-pEEYLQAFTY complex.ResultsWe performed long-term MD simulations with a total simulation time of 8 µs, employing 10 independent 400 ns replicas for the free and the TCR-bound pMHC system. Upon TCR ligation, we observed a reduced dynamic flexibility in the central residues of the peptide and the MHC α1-helix, altered occurrences of hydrogen bonds between the peptide and the MHC, a reduced conformational entropy of the peptide-binding groove, as well as a decreased solvent accessible surface area.ConclusionsIn summary, our results from 8 µs MD simulations indicate a restricted conformational space of the MHC peptide-binding groove upon TCR ligation and suggest a minimum simulation time of approximately 100 ns for biomolecules of comparable complexity to draw meaningful conclusions. Given the relatively long total simulation time, our results contribute to a more detailed view on conformational flexibility properties of the investigated free and TCR-bound pMHC-I system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.