Abstract

Several cyclic peptides have been reported to have unexpectedly high membrane permeability. Of these, cyclosporin A is perhaps the most well-known example, particularly in light of its relatively high molecular weight. Observations that cyclosporin A changes conformation depending on its solvent environment led to the hypothesis that conformational dynamics is a prerequisite for its permeability; however, this hypothesis has been difficult to validate experimentally. Here, we use molecular dynamics simulations to explicitly determine the conformational behavior of cyclosporin A and other related cyclic peptides as they spontaneously transition between different environments, including through a lipid bilayer. These simulations are referenced against simulations in explicit water, chloroform, and cyclohexane and further validated against NMR experiments, measuring conformational exchange, nuclear spin relaxation, and three-dimensional structures in membrane-mimicking environments, such as in dodecylphosphocholine micelles, to build a comprehensive understanding of the role of dynamics. We find that conformational flexibility is a key determinant of the membrane permeability of cyclosporin A and similar membrane-permeable cyclic peptides, as conformationally constrained variants have limited movement into, then through, and finally out of the membrane in silico. We envisage that a better understanding of dynamics might thus provide new opportunities to modulate peptide function and enhance their delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.