Abstract
BackgroundDefects in the human Shwachman-Bodian-Diamond syndrome (SBDS) protein-coding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Although genomic and biophysical studies have suggested involvement of this protein in RNA metabolism and in ribosome biogenesis, its interacting partners remain largely unknown.ResultsWe determined the crystal structure of the SBDS orthologue from Methanothermobacter thermautotrophicus (mthSBDS). This structure shows that SBDS proteins are highly flexible, with the N-terminal FYSH domain and the C-terminal ferredoxin-like domain capable of undergoing substantial rotational adjustments with respect to the central domain. Affinity chromatography identified several proteins from the large ribosomal subunit as possible interacting partners of mthSBDS. Moreover, SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments, combined with electrophoretic mobility shift assays (EMSA) suggest that mthSBDS does not interact with RNA molecules in a sequence specific manner.ConclusionIt is suggested that functional interactions of SBDS proteins with their partners could be facilitated by rotational adjustments of the N-terminal and the C-terminal domains with respect to the central domain. Examination of the SBDS protein structure and domain movements together with its possible interaction with large ribosomal subunit proteins suggest that these proteins could participate in ribosome function.
Highlights
Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) proteincoding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities
We present the results of affinity chromatography and SELEX experiments aimed at identifying protein and RNA molecules that interact with the mthSBDS
We have determined the X-ray structure of the SBDS protein from Methanothermobacter thermautotropicus
Summary
Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) proteincoding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Mutations of the human SBDS gene are associated with the condition known as Shwachman-Diamond syndrome (SDS), an autosomal recessive disorder with clinical features including hematological and skeletal abnormalities and exocrine pancreatic insufficiency [OMIM:260400]. The most common mutations associated with SDS include the polypeptide chain truncation K62X caused by the introduction of an in-frame stop codon (183–184TA → CT mutation) and a donor splicing site mutation, 258+2T → C, which causes premature truncation of the encoded protein by frameshift (84Cfs). Several point mutations across the entire sequence of the protein are associated with SDS [2,3,4,5,6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.