Abstract

Fatty acid binding proteins (FABPs) can facilitate the transfer of long-chain fatty acids between intracellular membranes across considerable distances. The transfer process involves fatty acids, their donor membrane and acceptor membrane, and FABPs, implying that potential protein-membrane interactions exist. Despite intensive studies on FABP-membrane interactions, the interaction mode remains elusive, and the protein-membrane association and dissociation rates are inconsistent. In this study, we used nanodiscs (NDs) as mimetic membranes to investigate FABP-membrane interactions. Our NMR experiments showed that human intestinal FABP interacts weakly with both negatively charged and neutral membranes, but it prefers the negatively charged one. Through simultaneous analysis of NMR relaxation in the rotating-frame (R1ρ), relaxation dispersion, chemical exchange saturation transfer, and dark-state exchange saturation transfer data, we estimated the affinity of the protein to negatively charged NDs, the dissociation rate, and apparent association rate. We further showed that the protein in the ND-bound state adopts a conformation different from the native structure and the second helix is very likely involved in interactions with NDs. We also found a membrane-induced FABP conformational state that exists only in the presence of NDs. This state is native-like, different from other conformational states in structure, unbound to NDs, and in dynamic equilibrium with the ND-bound state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call