Abstract

The conformational energies required for ligands to adopt their bioactive conformations were calculated for 33 ligand-protein complexes including 28 different ligands. In order to monitor the force field dependence of the results, two force fields, MM3* and AMBER*, were employed for the calculations. Conformational analyses were performed in vacuo and in aqueous solution by using the generalized Born/solvent accessible surface (GB/SA) solvation model. The protein-bound conformations were relaxed by using flat-bottomed Cartesian constraints. For about 70% of the ligand-protein complexes studied, the conformational energies of the bioactive conformations were calculated to be < or = 3 kcal/mol. It is demonstrated that the aqueous conformational ensemble for the unbound ligand must be used as a reference state in this type of calculations. The calculations for the ligand-protein complexes with conformational energy penalties of the ligand calculated to be larger than 3 kcal/mol suffer from uncertainties in the interpretation of the experimental data or limitations of the computational methods. For example, in the case of long-chain flexible ligands (e.g. fatty acids), it is demonstrated that several conformations may be found which are very similar to the conformation determined by X-ray crystallography and which display significantly lower conformational energy penalties for binding than obtained by using the experimental conformation. For strongly polar molecules, e.g. amino acids, the results indicate that further developments of the force fields and of the dielectric continuum solvation model are required for reliable calculations on the conformational properties of this type of compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.