Abstract
Carbon nanowires made of long linear atomic chains have attracted considerable interest due to their potential applications in nanoelectronics. We report a theoretical characterization of assemblies with good prospects for chemical synthesis made of two coronene molecules (graphene-like pieces) bridged by carbon linear chains with distinct sizes and parities. Our calculations are performed within all-electron density functional theory. We examine the effects of two conformations (syn and anti) of the terminal anchor pieces, representing energy minima for these systems, on the properties of the carbon chains. The calculated electronic states reveal that simplified chemical models such as those based on cumulenes or polyynes are not appropriate to describe the linear chains with sp2 terminations. For these types of atomic chains, we find that the electronic ground state of the odd-numbered chains is spin polarized. Vibrational properties of all these chains are studied by calculating Raman scattering and in...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.