Abstract

Caffeic acid is one of the widely distributed phenolic compounds in nature and can be found in planet products. On the other hand, trypsin is a vital digestive enzyme in the intestine that plays an essential role in the immune response, blood coagulation, apoptosis and protein maturation like protein digestion. Several studies have revealed the inhibitory effects of the phenolic compound on the digestive enzyme. The present study reports functional and conformational alteration of trypsin after caffeic acid addition using multiple experimental and computational techniques for the first time. The intrinsic fluorescence of trypsin is quenched in the presence of caffeic acid via a static mechanism. The percent of secondary structures (α-helix and β-sheet) of trypsin alter after caffeic acid addition. In the kinetic study, a reduction in the trypsin function is obtained with a lower V max and K cat upon interaction with caffeic acid. The thermal study reveals an unstable structure of trypsin upon complex formation with this phenolic compound. Also, the binding sites and conformational changes of trypsin are elucidated through molecular docking and molecular dynamic simulation. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call