Abstract
A conformational analysis of o-fluoro Z-azobenzene reveals a slight preference for aromatic C-F/π interaction. Density functional theory (DFT) indicates that the conformation with a C-F/π interaction is preferred by approximately 0.3-0.5 kcal/mol. Ground-state conformations were corroborated with X-ray crystallography. (Z)-Azobenzene (Z-AB) with at least one o-fluoro per ring displays (19)F-(19)F through-space (TS) coupling. 2D J-resolved NMR was used to distinguish through-bond from TS coupling ((TS)JFF). (TS)JFF decreases as the temperature is lowered and the multiplets coalesce into broad singlets. We hypothesize that the coalescence temperature (Tc) corresponds to the barrier for phenyl rotation. The experimentally determined barrier of 8-10 kcal/mol has been qualitatively verified by DFT where transition states with a bisected geometry were identified with zero-point energies of 6-9 kcal/mol relative to ground state. These values are significantly higher that values estimated from previous theoretical studies but lie within a reasonable range for phenyl rotation in hydrocarbon systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.