Abstract
Pyk2 is a non-receptor tyrosine kinase that evolved from gene duplication of focal adhesion kinase (FAK) and subsequent functional specialization in the brain and hemopoietic cells. Pyk2 shares a domain organization with FAK, with an N-terminal regulatory FERM domain adjoining the kinase domain. FAK regulation involves integrin-mediated membrane clustering to relieve autoinhibitory interactions between FERM and kinase domains. Pyk2 regulation remains cryptic, involving Ca2+ influx and protein scaffolding. While the mechanism of the FAK FERM domain in autoinhibition is well-established, the regulatory role of the Pyk2 FERM is ambiguous. We probed the mechanisms of FERM-mediated autoinhibition of Pyk2 using hydrogen/deuterium exchange mass spectrometry and kinase activity profiling. The results reveal FERM-kinase interfaces that are responsible for autoinhibition. Pyk2 autoinhibition impacts the activation loop conformation. In addition, the autoinhibitory FERM-kinase interface exhibits allosteric linkage with the FERM basic patch conserved in both FAK and Pyk2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.