Abstract

Diffusional dynamics of the donor-acceptor distance are responsible for the appearance of a new time scale of diffusion over the distance of electronic tunneling in electron-transfer reactions. The distance dynamics compete with the medium polarization dynamics in the dynamics-controlled electron-transfer kinetics. The pre-exponential factor of the electron-transfer rate constant switches, at the crossover distance, between a distance-independent, dynamics-controlled plateau and exponential distance decay. The crossover between two regimes is controlled by an effective relaxation time slowed down by a factor exponentially depending on the variance of the donor-acceptor displacement. Flexible donor-acceptor complexes must show a greater tendency for dynamics-controlled electron transfer. Energy chains based on electron transport are best designed by placing the redox cofactors near the crossover distance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call