Abstract
Tethered bilayer lipid membranes (tBLMs) have attracted great interest recently due to their crucial roles in elucidating fundamental membrane characteristics and the implications in biochemical sensors and pharmaceutical drug carriers. Nevertheless, they have not yet been investigated computationally on the molecular scale. Here, we study tBLMs consisting of DOPCs (1,2-dioleoyl-sn-glycero-3-phosphocholine) as free lipids and pegylated DOPCs (on phosphate group) as tethers in water by a variation of the MARTINI model. By varying grafting densities and tether lengths, distinct conformational changes from planar to undulated bilayers are observed. Lateral diffusivities and lateral pressure profiles show that the dynamical and tensional states are specific to the system configurations. These results suggest that the conformations, fluidity, and elasticity of the tBLMs can be tuned and manipulated to conform to various requirements in theoretical investigations and technological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.